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Abstract— Visual-Inertial Odometry (VIO) usually suffers
from drifting over long-time runs, the accuracy is easily affected
by dynamic objects. We propose DynaVIG, a navigation and
object tracking system based on the integration of Monocular
Vision, Inertial Navigation System (INS), and Global Navigation
Satellite System (GNSS). Our system aims to provide an
accurate global estimation of the navigation states and object
poses for the automated ground vehicle (AGV) in dynamic
scenes. Due to the scale ambiguity of the object, a prior height
model is proposed to initialize the object pose, and the scale
is continuously estimated with the aid of GNSS and INS. To
precisely track the object with complex moving, we establish an
accurate dynamics model according to its motion state. Then the
multi-sensor observations are optimized in a unified framework.
Experiments on the KITTI dataset demonstrate that the multi-
sensor fusion can effectively improve the accuracy of navigation
and object tracking, compared to state-of-the-art methods. In
addition, the proposed system achieves good estimation of the
objects that change speed or direction.

I. INTRODUCTION

Navigation and object tracking are two significant tasks
in autonomous driving and robotics. Simultaneous Local-
ization and Mapping (SLAM) using a monocular camera
has low cost and high computational efficiency. The fusion
of monocular SLAM with Inertial Navigation System (INS)
and Global Navigation Satellite System (GNSS) can greatly
improve the accuracy and robustness of navigation, the scale
estimation enables monocular SLAM to obtain the capability
of 3D measuring, which is similar to stereo or LiDAR.
Object tracking can obtain the object’s pose, allowing safety
in automatic driving and physical interaction in augmented
reality (AR)/virtual reality (VR). SLAM and object tracking
are strongly correlated, some studies [1]-[3] have recently
unified the problem of SLAM and object tracking and
verified that they can benefit each other.

Many researchers studied Visual-Inertial Odometry (VIO)
for the complementarity of the Inertial Measurement Unit
(IMU) and SLAM. However, VIO has four unobservable
directions [4] and suffers from drifting over long-time runs.
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Fig. 1. One example on KITTI shows: (a) one object (pink) with its speed,
and the static features (green). (b) 4D map corresponding to (a), trajectories
of the camera (blue) and the object(pink). (c) The projection of the camera
and the object on a 2D plane, the yaw angles and the object depth are given.

GNSS is an easy-obtained, drift-free, and global-aware obser-
vation that provides accurate long-term correction, thus Vi-
sion/INS/GNSS integration becomes attractive. The integra-
tion mainly includes loosely-coupled integration using GNSS
position results and tightly-coupled integration using GNSS
raw measurements [5], they achieve similar accuracy in open
environments. Loosely-coupled integration is convenient to
design the algorithm and configure the information matrix,
while GNSS cannot provide results with less than 4 satellites.
Tightly-coupled integration can work in challenging scenes
using even 1 satellite, but the insufficient observations and
multipath effect will seriously reduce the accuracy [6].
Moreover, the framework of tightly-coupled integration is
complex, and the noise propagation needs careful handling.
A general problem is that most VIO and Vision/INS/GNSS
integrated systems neglect dynamic objects, which will re-
duce the performance in dynamic scenes.

To decrease the influence of dynamic objects, some works
detect and eliminate them. However, the simple elimination
may lose some available information about the objects. Some
recent works [1]-[3], [7] have unified SLAM and object
tracking and achieved a win-win for such two tasks, however,
there are some shortcomings. The works with the monocular
camera usually use the camera height to scale the map and
object, but this needs a changeless camera height and an
observable ground plane. The object pose of the 6 Degree of
Freedom (DoF) definition fails to exploit the constraints of
plane ground, while the 3 DoF definition ignores slopes. In
addition, most works assume a constant velocity model of
the camera and objects, which will affect the accuracy when
they change speed or direction.
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To address the above issues, we propose DynaVIG based
on the Monocular Vision/INS/GNSS integration for nav-
igation and object tracking. A loosely coupled GNSS is
applied considering the complexity of object tracking and the
availability of the KITTI dataset. The object pose is defined
as 4 DoF to make better use of the ground constraint, and
it is initialized via a prior height model due to the scale
ambiguity. An accurate dynamics model of the object is
constructed to process objects with complex motion, it is then
combined with multi-sensor measurements to optimize the
navigation states, map points, and object poses. Experiments
of the KITTI tracking dataset are conducted for validation,
one example is shown in Fig. 1. We highlight the contribu-
tions of our work as follows:

• A unified framework of navigation and object tracking is
constructed based on the Monocular Vision/INS/GNSS
integration;

• A prior height model and a precise dynamics model of
the object are proposed for accurate object tracking;

• The experiments verify the improvements of the pro-
posed system compared with existing methods;

II. RELATED WORK

A. Visual SLAM with Multi-Sensor Fusion

VIO is a widely researched topic [8]-[11] and obtains great
improvements, but it suffers from drifts and unobservable
directions. Scholars have studied the Vision/INS/GNSS inte-
gration to overcome the weaknesses of VIO. Earlier works
are mainly loosely-coupled integrations. VINS-Fusion [12]
couples GPS positions with VIO poses, but the result-level
fusion depends heavily on the quality of GPS and VIO
outputs. The work in [13] uses GNSS to couple with INS
and vision, however, the GNSS simulated from the indoor
dataset may limit the application. Recent works researched
tightly-coupled integration to make better use of GNSS
raw measurements. GVINS [4] is an excellent work of
GNSS tightly-coupled integration with VIO, but it uses
low-precision GNSS pseudorange measurements with meters
of noise, and the ionospheric delay and troposphere delay
using standard models may not be accurate enough. GAINS
[14] uses GNSS pseudorange, Doppler frequency shift, and
carrier phase measurements with a lightweight filter, which
could be prone to the nonlinear error of SLAM. The main
advantage of tightly-coupled integration is the ability to
provide continuous service in challenging scenes, but the
model is complicated and the accuracy may still be limited.

B. Scale Estimation for Monocular SLAM

Scale estimation is a critical topic for monocular SLAM.
The work in [15] estimates the scale of monocular SLAM
with a Bayesian filter, it uses the camera height to provide
the initial scale and the object’s prior height for correction.
CubeSLAM [7] also uses the camera height and object size
for scale. But different from [15], CubeSLAM constructs a
framework for SLAM and objects to maintain a consistent
scale. These approaches assume a given fixed camera height
and an observable ground plane, which is easily influenced

by shaking, occlusion, and slope. Therefore, some scholars
try to recover the monocular scale without prior information.
The work in [16] uses some network architectures to estimate
absolute distances between consecutive frames. The authors
of [17] introduce the concept of ”extent” to constrain the
scale drift of SLAM and objects. These methods do not need
constant camera height or planar roadway, but there is no
information for physical scale estimation.

C. Dynamic SLAM with Object Tracking

To weaken the impact on SLAM, earlier works use
geometric [18], [19] or learning-based methods [20], [21]
to remove the dynamic objects. These works are effective
but lose high-level information, failing to maximize the
SLAM accuracy. Recently, researchers make efforts to couple
the problems of SLAM and object tracking. CubeSLAM
[7] generates the object’s 3D bounding box using the 2D
bounding box and vanishing points, then SLAM and object
tracking are optimized together. CubeSLAM realizes 3D
object detection with only one camera, but it is limited
to stationary or slow-moving objects. VDO-SLAM [1] uses
dense optical flow to ensure the robustness of object tracking,
however, the calculation is very complicated. DynaSLAM II
[2] proposes a tightly-coupled algorithm of SLAM and object
tracking, but the object pose is defined as 6DoF without
the constraint of the ground. TwistSLAM [3] uses plane
ground assumption to constrain an object’s movements, the
performance shows great advantages over previous works,
while the 3DoF of pose definition may not satisfy the slopes.
Moreover, These works use a constant velocity model of the
camera and object, which may be inaccurate in some cases.
Some algorithms treat all objects as dynamic, resulting in
fewer available features when the object is static.

Most multi-sensor integrated approaches are easily af-
fected by dynamic objects, and the accuracy of SLAM and
object tracking algorithms are usually limited, thus the navi-
gation performance of the automated ground vehicle (AGV)
could be seriously restricted in dynamic scenes. To this end,
we aim to build an accurate global navigation and object
tracking system using the Monocular Vision/INS/GNSS inte-
gration. By leveraging the drift-free GNSS and high-rate INS
measurements, the system can eliminate the drift of SLAM
and enable 3D object tracking with a monocular camera. The
system can be used for AGV to precisely estimate the poses
of the camera and objects.

III. METHOD

The structure of the proposed system is shown in Fig. 2.
After being detected by YOLOv5, the objects are associated
between frames by optical flow with the BRIEF descriptor.
The object’s motion state is rapidly determined, and the
static ones are regarded as a part of the environment. IMU
pre-integration and GNSS solutions can be calculated with
parallel threads. Before the optimization, the prior height
model is used to initialize the object pose, and the dynamics
model is established according to its motion state. Then the
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Fig. 2. Overview of our proposal. The front-end generates the objects with YOLOv5 and extracts Good Features, as shown in (a). (b) demonstrates the
object association via optical flow with the BRIEF descriptor, its motion state is determined by the statistical characteristics of its depth sequence. (c)
illustrates the observations including static features extracted in (a) and static objects in (b), as well as IMU and GNSS. (d) shows that given the prior
height and dynamics models of the object, SLAM and object tracking are jointly optimized.
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Fig. 3. Illumination of the coordinate frames, including the frame B, C,
O, and N (ENU). The green symbols are the known extrinsic parameters
between sensors, and the red symbols are the states.

multi-sensor measurements are optimized for the navigation
and object tracking in a unified framework.

A. Notations

We define TXY ∈ SE(3) as the transformation from
frame Y to X , PX ∈ R3 as the point coordinate in frame
X , and vXY ∈ R3 as the translational velocity of Y in frame
X . Four coordinate frames are defined in Fig. 3, including
the Body frame B (aligned to the IMU frame), the camera
frame C, the object frame O, and the navigation frame N .
The frame N , also known as east-north-up (ENU), is the
global reference for the system. The GNSS-IMU extrinsic
parameter TBG and the Camera-IMU extrinsic parameter
TBC have been calibrated. The body pose TNB , the object
pose TNO, the map point PM , and the object point PO are
the states to be estimated. The states also include the body
velocity vNB and the velocity vNO, the yaw speed vψ , and

the scale s of the object.

B. Vision Front-End with Object Processing

The object’s features are extracted by the method of [22],
and the association via features matching uses high-efficiency
Lucas-Kanade (LK) optical flow. However, it is not easy to
track the object accurately even using multiscale pyramidal
optical flow, due to the motion of objects. To improve the
association robustness, we use a method named optical flow
with the descriptor. Firstly a bidirectional optical flow is used
for features matching, then the BRIEF descriptors [23] are
calculated to select good matches via descriptor distance.

If the stationary objects are determined quickly, more
available static features could be used for SLAM. As the
multi-view geometry constraint does not satisfy the dynamic
features, the standard deviation (STD) of the triangulated
depth sequence d = [d0, d1, · · · , dm] can be used to deter-
mine the motion state. The STD should be small for static
objects, while large for dynamic ones.

C. Prior Height Model for Object Parametrization

TwistSLAM [3] set the object pose as 3 DoF with plane
road constraints, which may affect the accuracy on slopes.
Since most small slopes (such as Fig. 1 shows) could lead to
the long-term displacement of the z-axis but a slight change
of pitch and roll, we define the object pose as 4 DoF, i.e.,
3D translation and 1D rotation (yaw). The initial yaw ψ can
be determined with ψ = tan−1 (vn/ve) [24], where vn and
ve are the north and east components of the object’s initial
velocity respectively. The initial velocity can be calculated
by position differential. Therefore, the initial position is the
key to determining the initial state of the object. However,
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Fig. 4. Prior height Model of the object. OC is the center of the frame C,
PC

i is the point of the object in the frame C, pn
i is the projection of PC

i
on the normalized plane. The green points PC

1 and PC
2 are the top and

bottom points of the object respectively, and the prior height h̃C represents
the distance of them. The yellow point PC

3 is projected to the center of the
normalized plane. OCPC

3 = d is object depth in the frame C.

the object position can not be calculated by triangulation due
to scale ambiguity.

To solve this problem, we propose a prior height model
shown in Fig. 4. Assuming the height of a class (such as a
person or car) is known, the initial position of the object in
the frame C can be determined. Let PC

1 (XC
1 , Y

C
1 , ZC1 ) and

PC
2 (XC

2 , Y
C
2 , ZC2 ) be the top and bottom point of the object

in the frame C respectively, they are projected as pn1 (xn1 , y
n
1 )

and pn2 (xn2 , y
n
2 ) on the normalized plane. pni (xni , y

n
i ) can

be converted via reprojection from the image observation
(ui, vi). According to the triangular similarity, we have:

1

d
=

yn2 − yn1
Y C2 − Y C1

=
yn2 − yn1
h̃C

(1)

where h̃C is the prior height of the object, then we have
the depth d = h̃C/(y

n
2 − yn1 ). Hence, the coordinates of any

object point k in the frame C can be calculated:[
XC
k Y Ck ZCk

]
=

h̃C
yn2 − yn1

·
[
xnk ynk 1

]
(2)

Assuming the scale s = ĥC/h̃C , where ĥC is the true height.
s is added to the state vector for further refinement.

D. Factor Graph Optimization for Vision/INS/GNSS integra-
tion with Object Tracking

As mentioned in section III-A, the states can be defined as
X = [TNB ,vNB ,PM , s,TNO,PO, vψ,vNO], Assuming
all the observations are with Gaussian distribution, the factors
can be processed with one optimizer. The loss function of
DynaVIG is defined as follows:

arg min
X

=

{∑
‖esta‖2ΣS

+
∑
‖eIMU‖2ΣI

+∑
‖eGNSS‖2ΣG

+
∑
‖eobj‖2ΣO

+∑
‖edm‖2Σv

} (3)

where esta, eIMU , eGNSS , eobj , and edm are the static
feature, IMU pre-integration, GNSS, object feature, and
object dynamics factors respectively, Σ is the covariance
matrix. The traditional esta, eIMU , eGNSS are as follows:

esta = π((TNBTBC)−1PM )− ps

eIMU = fPI(∆Rij ,∆vij ,∆tij ,TNB ,vNB)

eGNSS = (TNBTBG)|t − tNG

(4)

where π is the reprojection function, ps is the coordinate
of the static feature on the normalized plane; fPI is the
IMU factor function, ∆Rij ,∆vij ,∆tij are the changes of
rotation, velocity, and position pre-integrated using IMU
measurements respectively; tNG indicates the GNSS position
solutions in the frame N .

Based on the reprojection π, eobj can be reconstructed:

eobj = π(s · TCNTNOPO)− pO (5)

where TCN is the inverse of the camera pose; PO is the
coordinate of the object point, pO is its image observation.

For the object’s dynamics model, we assume the velocities
of the yaw and translation vary slowly. Let v = [vψ,vNO],
it can be modeled as a random constant in a short time:

v̇ = 0

vi−1 = vi
(6)

The two equations are the continuous and discrete forms of
the random process of v respectively, i − 1 and i are two
consecutive images. We propose to set the variance intensity
of v according to the motion complexity. Assuming the
current velocity is the same as the previous, the variance
intensity could be determined more accurately. Therefore,
the random model and the optimization are cause and effect
to each other. Then edm is defined as follows:

edm = vi − vi−1

Σedm
= exp(‖vi−1‖ ·KO)

(7)

where KO is the gain factor for velocity amplification.

IV. EXPERIMENTAL RESULTS
A. Experimental Setup

The proposed DynaVIG is evaluated on the KITTI Track-
ing dataset [25], which mainly contains cars and pedestrians,
the ground truth of the camera and objects are provided.
The IMU is extracted from the KITTI Raw dataset since
only the raw IMU with a high rate (100Hz) is useful. The
KITTI IMU may contain some sick ranges, including time
stamp errors and duplicate records. Fortunately, these ranges
are usually very short (within 0.1s), allowing us to fix them
by interpolating their neighbors. The GNSS measurements
are simulated by corrupting the trajectory with Gaussian
noise, the sampling rate is 1Hz. The number of keyframes in
the sliding window is limited to 10. The factor graph-based
GTSAM [26] is used for optimization.

The major evaluation metrics are the absolute trajectory
error (ATE) and relative pose error (RPE) [27]. The object
scale error and the computational time are analyzed as well.
We compare our results with state-of-the-art algorithms.



TABLE I
CAMERA POSE COMPARISON WITH EXISTING ALGORITHMS ON THE KITTI DATASET. ATE IS IN m, RPEt IN m/f , RPER IN ◦/f

seq VDO-SLAM [1] DynaSLAM II [2] TwistSLAM [3] Ours
ATE RPEt RPER ATE RPEt RPER ATE RPEt RPER ATE RPEt RPER

00 - 0.07 0.07 1.29 0.04 0.06 - 0.04 0.05 0.03 0.02 0.04
01 - 0.12 0.04 2.31 0.05 0.04 - 0.04 0.03 0.05 0.03 0.05
02 - 0.04 0.02 0.91 0.04 0.02 - 0.03 0.03 0.05 0.03 0.06
03 - 0.08 0.03 0.69 0.06 0.04 - 0.06 0.02 0.02 0.02 0.05
04 - 0.11 0.05 1.42 0.07 0.06 - 0.06 0.04 0.04 0.02 0.05
05 - 0.09 0.02 1.34 0.06 0.03 - 0.06 0.02 0.02 0.01 0.03
06 - 0.02 0.05 0.19 0.02 0.04 - 0.02 0.04 0.01 0.01 0.04
07 - - - 3.10 0.05 0.07 - 0.04 0.04 0.09 0.04 0.04
08 - - - 1.68 0.10 0.04 - 0.07 0.03 0.07 0.05 0.08
09 - - - 5.02 0.06 0.06 - 0.05 0.04 0.02 0.01 0.04
10 - - - 1.30 0.07 0.03 - 0.07 0.03 0.03 0.02 0.04
11 - - - 1.03 0.04 0.03 - 0.03 0.02 0.08 0.02 0.04
13 - - - 1.10 0.04 0.04 - 0.03 0.04 0.17 0.07 0.08
14 - - - 0.12 0.03 0.08 - 0.03 0.06 0.03 0.02 0.07
18 - 0.07 0.02 1.09 0.05 0.02 - 0.04 0.02 0.05 0.05 0.03
19 - - - 2.25 0.05 0.03 - 0.03 0.03 0.29 0.02 0.01
20 - 0.17 0.03 1.36 0.07 0.04 - 0.04 0.03 0.07 0.04 0.06

mean - 0.087 0.037 1.541 0.053 0.043 - 0.044 0.034 0.066 0.028 0.048
std - 0.044 0.018 1.159 0.019 0.017 - 0.015 0.011 0.068 0.016 0.018

B. Camera Pose Estimation

This section analyzes the camera pose estimation. Table
I shows the comparison of our method with the existing
algorithms. The previous works all used stereo vision, and
only DynaSLAM II calculated the ATE. We can see that
DynaVIG achieves obvious improvements on the ATE and
RPEt, indicating that GNSS and INS have good effects on
the camera translation. The RPER of TwistSLAM slightly
outperforms DynaVIG. Since the KITTI sequences are usu-
ally too short for IMU bias to converge, the camera rotation
depends mainly on the visual observations, thus DynaVIG
using a monocular camera obtains lower rotation accuracy
than stereo systems. As discussed in [27], the low precision
of rotation will further deteriorate RPEt, because RPEt
considers both translational and rotational errors. Therefore,
the higher RPEt accuracy of DynaVIG shows that multi-
sensor fusion has a great advantage in translation estimation,
compared with pure visual SLAM.

C. Object Tracking

For object pose, we use the sequences analyzed in Dy-
naSLAM II and TwistSLAM, the results are shown in Table
II. It demonstrates that DynaVIG mostly outperforms other
algorithms on the ATE. This also benefits from the advantage
of multi-sensor fusion in translation estimation, although the
object translation of DynaVIG contains a scale error. This
is because the estimation of object pose largely depends on
the camera pose when optimized jointly, as the camera pose
estimation has more sensors and a better geometry structure
of features. DynaVIG achieves better RPER, which is greatly
due to the proposed dynamics model, good examples are

objects with speed or/and direction changes, such as 10-0,
20-0, and 20-12 (sequence-id). Compared with TwistSLAM,
the slightly worse RPEt of DynaVIG is most likely due to
the scale error.

The monocular scale errors of the objects are calculated
in Table II, which is about 10% in most cases. The scale
converging curves are shown at the bottom right of each
column in Fig. 5, the scale of most objects can converge with
time. However, there are some abnormal cases. Both 11-35
and 19-63 are static cars, and the camera of both sequences
stayed stationary for a long time during the driving. The
lack of translation leads to the inability to effectively scale
estimation. 20-122 takes a small size of the image and is
blocked for a short time, thus its scale may not converge.

D. Computational Time

In this section, we evaluate the computational time of our
method. The experiments are carried out on a desktop PC
with an Intel i3-4150 at 3.5GHz and 16-GB memory. To
perform a fair comparison with DynaSLAM II, the front-
end including the object processing of DynaVIG is treated
as the tracking thread in DynaSLAM II, and the back-end is
treated as the Local BA thread of DynaSLAM II. The results
are listed in Table III. The front-end of DynaVIG spends
about the same amount of time as DynaSLAM II, showing
that both DynaVIG and DynaSLAM II could run in real time.
However, the back-end of DynaVIG costs more much time
than DynaSLAM II. Due to the different number of cameras
and features, the influences on the front-end computation
are hard to compare. As for the back-end, the number of
features should be likely the main reason for the difference



TABLE II
OBJECT POSE COMPARISON WITH EXISTING ALGORITHMS ON THE KITTI DATASET. ATE IS IN m, RPEt IN m/m, RPER IN ◦/m

seq id DynaSLAM II [2] TwistSLAM [3] Ours
ATE RPEt RPER ATE RPEt RPER ATE RPEt RPER scale error

03 1 0.69 0.34 1.84 0.31 0.10 0.28 0.26 0.73 0.47 17.38%

05 31 0.51 0.26 13.50 0.35 0.19 0.58 0.18 0.24 0.32 3.66%

10 0 0.95 0.40 2.84 0.77 0.21 1.98 0.12 0.20 0.43 13.17%

11 0 1.05 0.43 12.51 0.17 0.23 0.23 0.16 0.74 0.46 5.06%
35 1.25 0.89 16.64 0.10 0.03 0.11 0.07 0.02 0.27 -

18 2 1.10 0.30 9.27 0.21 0.27 0.66 0.05 0.32 0.29 1.14%
3 1.13 0.55 20.05 0.15 0.21 0.56 0.26 0.17 0.22 10.22%

19 63 0.86 1.45 48.80 0.28 2.17 1.08 0.44 0.24 0.25 -
72 0.99 1.12 3.36 0.16 0.05 0.34 0.11 0.01 0.08 93.10%

20
0 0.56 0.45 1.30 0.17 0.20 0.72 0.23 0.69 0.28 7.36%
12 1.18 0.40 6.19 0.24 0.20 1.54 0.06 0.36 0.60 10.40%

122 0.87 0.72 5.75 0.17 0.02 0.07 0.11 0.48 0.55 11.11%

mean 0.928 0.609 11.838 0.257 0.323 0.679 0.170 0.350 0.352 17.26%
std 0.240 0.369 13.140 0.177 0.588 0.587 0.114 0.258 0.151 27.07%

Fig. 5. Visualization of object tracking of the sequence 0003 (left), 0005 (Middle), and 0020 (Right) on the KITTI trakcing dataset. (Top): Pink and
yellow rectangles are objects with speed. Green points with rectangles are environment features; (Bottom left): 4D point clouds of the objects and map;
(Bottom right): object scale converging curves with time.

TABLE III
COMPARISON OF COMPUTATIONAL TIME (mSec).

3 20

front-end back-end front-end back-end

DynaSLAM II 80.10 61.37 94.56 65.03

Ours 84.85 148.83 86.89 166.35

in computational time.

V. CONCLUSIONS
We propose DynaVIG, a navigation and object tracking

system based on the Monocular Vision/INS/GNSS integra-
tion, which can eliminate the drift of traditional SLAM and
realize 3D object tracking with a monocular camera. A prior
height model is proposed for pose initialization and scale
estimation of the object, and an accurate dynamics model

is constructed for precise tracking of objects with complex
motion. Compared with the existing algorithms, DynaVIG
achieves high-precision navigation and object tracking with
real-time performance. In summary, DynaVIG is one of
the state-of-the-art research of dynamic SLAM with object
tracking. To the best of our knowledge, this is the first study
using multi-sensor integration for accurate global navigation
and object tracking.

ACKNOWLEDGMENT

Thanks to Tianyi Liu and Shaoquan Feng from Wuhan
University, for their valuable suggestions of algorithm im-
provements and data processing.

REFERENCES

[1] J. Zhang, M. Henein, R. Mahony, and V. Ila, “VDO-SLAM:
a visual dynamic object-aware SLAM system,” arXiv preprint
arXiv:2005.11052, 2020.

http://arxiv.org/abs/2005.11052


[2] B. Bescos, C. Campos, J. D. Tardós, and J. Neira, “DynaSLAM II:
Tightly-Coupled Multi-Object Tracking and SLAM,” IEEE Robotics
and Automation Letters, vol. 6, no. 3, pp. 5191–5198, 2021.

[3] M. Gonzalez, E. Marchand, A. Kacete, and J. Royan, “TwistSLAM:
Constrained SLAM in Dynamic Environment,” IEEE Robotics and
Automation Letters, vol. 7, no. 3, pp. 6846–6853, 2022.

[4] S. Cao, X. Lu, and S. Shen, “GVINS: Tightly Coupled
GNSS–Visual–Inertial Fusion for Smooth and Consistent State Estima-
tion,” IEEE Transactions on Robotics, vol. 38, no. 4, pp. 2004–2021,
2022.

[5] H. Tang, T. Zhang, X. Niu, J. Fan, and J. Liu, “IC-GVINS: A Robust,
Real-time, INS-Centric GNSS-Visual-Inertial Navigation System for
Wheeled Robot,” arXiv preprint arXiv:2204.04962, 2022.

[6] W. Wen, X. Bai, Y. C. Kan, and L.-T. Hsu, “Tightly Coupled
GNSS/INS Integration via Factor Graph and Aided by Fish-Eye
Camera,” IEEE Transactions on Vehicular Technology, vol. 68, no. 11,
pp. 10 651–10 662, 2019.

[7] S. Yang and S. Scherer, “CubeSLAM: Monocular 3-D Object SLAM,”
IEEE Transactions on Robotics, vol. 35, no. 4, pp. 925–938, 2019.

[8] T. Qin, P. Li, and S. Shen, “VINS-Mono: A Robust and Versatile
Monocular Visual-Inertial State Estimator,” IEEE Transactions on
Robotics, vol. 34, no. 4, pp. 1004–1020, 2018.

[9] R. Mur-Artal and J. D. Tardós, “Visual-Inertial Monocular SLAM With
Map Reuse,” IEEE Robotics and Automation Letters, vol. 2, no. 2, pp.
796–803, 2017.

[10] A. Rosinol, M. Abate, Y. Chang, and L. Carlone, “Kimera: an
Open-Source Library for Real-Time Metric-Semantic Localization and
Mapping,” in 2020 IEEE International Conference on Robotics and
Automation (ICRA), 2020, pp. 1689–1696.

[11] C. Campos, R. Elvira, J. J. G. Rodrı́guez, J. M. M. Montiel, and
J. D. Tardós, “ORB-SLAM3: An Accurate Open-Source Library for
Visual, Visual–Inertial, and Multimap SLAM,” IEEE Transactions on
Robotics, vol. 37, no. 6, pp. 1874–1890, 2021.

[12] T. Qin, S. Cao, J. Pan, and S. Shen, “A general optimization-based
framework for global pose estimation with multiple sensors,” arXiv
preprint arXiv:1901.03642, 2019.

[13] G. Cioffi and D. Scaramuzza, “Tightly-coupled Fusion of Global Posi-
tional Measurements in Optimization-based Visual-Inertial Odometry,”
in 2020 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2020, pp. 5089–5095.

[14] W. Lee, P. Geneva, Y. Yang, and G. Huang, “Tightly-coupled GNSS-
aided Visual-Inertial Localization,” in 2022 International Conference
on Robotics and Automation (ICRA), 2022, pp. 9484–9491.

[15] E. Sucar and J.-B. Hayet, “Bayesian Scale Estimation for Monocular
SLAM Based on Generic Object Detection for Correcting Scale Drift,”
in 2018 IEEE International Conference on Robotics and Automation
(ICRA), 2018, pp. 5152–5158.

[16] D. Rukhovich, D. Mouritzen, R. Kaestner, M. Rufli, and A. Velizhev,
“Estimation of Absolute Scale in Monocular SLAM Using Synthetic
Data,” in 2019 IEEE/CVF International Conference on Computer
Vision Workshop (ICCVW), 2019, pp. 803–812.

[17] D. Frost, V. Prisacariu, and D. Murray, “Recovering Stable Scale in
Monocular SLAM Using Object-Supplemented Bundle Adjustment,”
IEEE Transactions on Robotics, vol. 34, no. 3, pp. 736–747, 2018.

[18] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardós, “ORB-SLAM: A
Versatile and Accurate Monocular SLAM System,” IEEE Transactions
on Robotics, vol. 31, no. 5, pp. 1147–1163, 2015.

[19] R. Mur-Artal and J. D. Tardós, “ORB-SLAM2: An Open-Source
SLAM System for Monocular, Stereo, and RGB-D Cameras,” IEEE
Transactions on Robotics, vol. 33, no. 5, pp. 1255–1262, 2017.
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